Concrete	Pictorial	Abstract
Addition		
Foundation Stage and Key Stage 1		
Combining two parts to make a whole $4+3=7$	A group of 3 combined with a group of 4 makes 7	$4+3=7$ (four is a part, 3 is a part and the whole is 7) You can show this on the 'cherry model' or the model'.
Counting on using cubes and number lines 4+2=6	$3+5=8$	The abstract number line. What is $\mathbf{2}$ more than four? What is the sum of 4 and 2? What is the total of 4 and 2 ?
 Regrouping to make 'friendly' 10 by using 10s frames and counters 6+5=11 ("a 4 and a 1 live inside 5 and 6 add 4 will make a friendly 10 " so $6+5$ becomes $10+1$)	Children to draw the 10s frames and counters	$9+6=15$ Inside 6 lives a 1 and a 5 so we can make a friendly 10 with the 9 and 1. $\begin{aligned} & 9+6 \\ & 155 \\ & 10+5=15 \end{aligned}$

Hemingford Grey Calculation Policy
Hemingford Grey Calculation Policy
20+73

Hemingford Grey Calculation Policy

Key Stage 2		
Use of place value counters to add HTO + HTU etc 243+368 (the 10 ones have been moved to make 1 ten. Then the 10 tens make another	Children to represent the counters: If they are problem solving, draw a bar model to represent the problem. ? $=243+368$	This written method can be used for larger numbers. Taking out some of the digits can be $\begin{array}{r} 243 \\ +368 \\ \hline 611 \\ \hline 11 \end{array}$ used for further challenge.
Concrete	Pictorial	Abstract
Subtraction		
Foundation Stage and Key Stage 1		
Physically taking away or removing objects from a whole. $4-3=1$	Children to draw the concrete resource and cross it out. Use of the bar model:	4-3$?=4-3$4 3 $?$

Counting back (using a number line or track or cubes) $6-2$		
Find the difference (using cubes, Cuisenaire rods, or other objects)	Children to draw the concrete resources. Find the difference between 9 and 5 XXXXXXXXX XXXXX Use the model:	Find the difference between 8 and 6 $8-6$, the difference is?
Making "friendly 10" using ten frames. 14-5 14-5= 14-4=10 (as inside 5 lives a 4 and a 1) 10-1=9	Children to represent the calculation pictorially. 14-5 Cross out the 4 first to leave a 10 then cross out the 1 from the 10.	14-5=9 can be represented in the bar model. Children to represent different ways they have solved the calcuation.

Hemingford Grey Calculation Policy
SCHOOI

HemingfordGrey
SCHOOL

Hemingford Grey Calculation Policy

Key Stage 2

Key Stage 2		
Column Method using counters. 234-88 (the red counters represent ones, the yellow are tens and the green are hundreds. One of the tens is exchanged for 10 ones)	Children's own drawing of counters in a place value chart.	 Answer: 475
Concrete	Pictorial	Abstract
Multiplication		
Foundation Stage and Key Stage One		
Repeated grouping or repeated addition. 3 times 4,3 lots of 4 or $\mathbf{3}$ groups of 4	Children to represent the practical resources as a picture. $\begin{array}{lll} \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \\ \mathrm{XX} & \mathrm{XX} & \mathrm{XX} \end{array}$ Use the bar model:	$\begin{aligned} & 4 \times 3 \\ & 4+4+4 \end{aligned}$

SCHOOL Hemingford Grey Calculation Policy
SCHOOL

Use arrays to illustrate $2 \times 5=5 \times 2$	tativity.	Children to draw the arrays and turn them round so they can see they represent the same total. $2 \times 5 \quad 5 \times 2$	Children to be able to use an array to write a range of calculations. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$
Partition to multiply. (using dienes or place value counters) 12×3 (12"3 times" or 3 groups of 12)		Children represent this pictorially 12×3	$12 \times 3=36$
tens $\square 1111 \square$ $\square 1111 \square$ पा11ा1口	ones	$30+6=36$	
306			

		Long multiplication 6×124, then 20×124 Answer: 3224	124×26 becomes 1 2 $\mathbf{1}$ $\mathbf{2}$ $\mathbf{4}$ \times $\mathbf{2}$ $\mathbf{6}$ $\mathbf{7}$ $\mathbf{4}$ $\mathbf{4}$ $\mathbf{2}$ $\mathbf{4}$ $\mathbf{8}$ $\mathbf{0}$ $\mathbf{3}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{4}$ 1 1 Answer: 3224

Hemingford Grey Calculation Policy
Each table in the picnic area could seat 5 children. Fifteen children were going to the picnic. How many tables would they need? $15 \div 5=3$
$00000-00000-00000-0000000000000$

	Please note the links between \div and x should be constantly reinforced. This can be done through the triangle model: The core fact is $3 \times 4=12$ but we can derive a division fact from this. $12 \div 4=3$ (the inverse) and $12 \div 3=4$
	$7 \div 2=3 \mathrm{r} 1$

Division as sharing using place value counters

This is a division calculation. It is $\mathbf{5 3 6}$ shared equally by 4.
The counters represent 536 and they have been shared equally into the 4 boxes which were empty at the beginning. I want to know

how

many in each group.

Children represent the counters pictorially
Long Division

Answer: 28.8

Step 1: List the multiples of 3: 3,6,9,12,15,18,21,24 Step 2: " 3's into 4 goes 1 group because 1x3=3. Put the 1 at the top the 3 underneath and the remainder 1 under the 3 . Bring down the next digit to form the 12. Repeat."
$432 \div 15$ becomes

$\frac{12}{15}=\frac{4}{5}$

Answer: $28 \frac{4}{5}$

Questions you can ask your child at home:

- What do you think about...
- Why do you think that?
- How do you know this?
- Tell me more...
- What questions do you still have?
- Prove that...
- Explain your thinking.
- Explain the method you used.
- How could you improve your learning?
- Now try this...
- X of these are incorrect/correct. Which ones and why?
- Can you tell a maths story to go with your calculation?
- Can you find any related facts?
- Invent another method or show how to solve it a different way.
- Can you explain what a common mistake might be and why?
- Are you sure? ...
- How do you know? ...
- What do you notice? ...
- What's the same and what's different? ...
- Can you convince me? ...
- Is there another way?
- Is it always, sometimes, or never true? ..
- I think I understand what you mean. Are you saying...

